Growth in Finite Simple Groups of Lie Type
نویسنده
چکیده
We prove that if L is a finite simple group of Lie type and A a symmetric set of generators of L, then A grows i.e |AAA| > |A| where ε depends only on the Lie rank of L, or AAA = L. This implies that for a family of simple groups L of Lie type of bounded rank the diameter of any Cayley graph is polylogarithmic in |L|. Combining our result on growth with known results of Bourgain, Gamburd and Varjú it follows that if Λ is a Zariski-dense subgroup of SL(d,Z) generated by a finite symmetric set S, then for squarefree moduli m, which are relatively prime to some number m0, the Cayley graphs Γ(SL(d,Z/mZ), πm(S)) form an expander family.
منابع مشابه
Locally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملOD-characterization of $U_3(9)$ and its group of automorphisms
Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.
متن کاملOn the Shortest Identity in Finite Simple Groups of Lie Type
We give bounds on the shortest identity in finite simple groups of Lie type.
متن کاملOD-characterization of $S_4(4)$ and its group of automorphisms
Let $G$ be a finite group and $pi(G)$ be the set of all prime divisors of $|G|$. The prime graph of $G$ is a simple graph $Gamma(G)$ with vertex set $pi(G)$ and two distinct vertices $p$ and $q$ in $pi(G)$ are adjacent by an edge if an only if $G$ has an element of order $pq$. In this case, we write $psim q$. Let $|G= p_1^{alpha_1}cdot p_2^{alpha_2}cdots p_k^{alpha_k}$, where $p_1
متن کاملModel Theory of Finite Difference Fields and Simple Groups
Asymptotic classes are classes of finite structures which have uniformly definable estimates for the cardinalities of their first-order definable sets akin to those in finite fields given by the Lang-Weil estimates. The goal of the thesis is to prove that the finite simple groups of a fixed Lie type and Lie rank form asymptotic classes. This requires the following: 1. The introduction describes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010